Основанием прямой призмы является трапеция. Найти площадь сечения, проходящего через высоты оснований. Основания трапеции равны 2 и 8 см, боковые стороны основания 5 см.
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
По свойству биссектрис трапеции они образовывают при боковых сторонах равнобедренные треугольники. Тогда ВК = АВ = 25 см, СК = СД = 30 см, тогда ВС = ВК + СК = 25 + 30 = 55 см.
Построим высоты ВН и СМ. Четырехугольник НВСМ прямоугольник, тогда НМ = ВС = 55 см.
В прямоугольном треугольнике СДМ определим длину катета ДМ.
ДМ2 = СД2 – СМ2 = 900 – 576 = 324.
ДМ = 18 см.
В прямоугольном треугольнике АВН определим длину катета АН.
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.
По свойству биссектрис трапеции они образовывают при боковых сторонах равнобедренные треугольники. Тогда ВК = АВ = 25 см, СК = СД = 30 см, тогда ВС = ВК + СК = 25 + 30 = 55 см.
Построим высоты ВН и СМ. Четырехугольник НВСМ прямоугольник, тогда НМ = ВС = 55 см.
В прямоугольном треугольнике СДМ определим длину катета ДМ.
ДМ2 = СД2 – СМ2 = 900 – 576 = 324.
ДМ = 18 см.
В прямоугольном треугольнике АВН определим длину катета АН.
АН2 = АВ2 – ВН2 = 625 – 576 = 49.
ДМ = 7 см.
Тогда АД = АН + НМ + ДМ = 7 + 55 + 18 = 80 см.
Определим площадь трапеции.
Sавсд = (ВС + АД) * ВН / 2 = (55 + 80) * 24 / 2 = 1620 см2.
ответ: Площадь трапеции равна 1620 см2.