В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
didlok
didlok
17.12.2020 07:34 •  Геометрия

Основания прямоугольной трапеции равны 16 и 18 см, а меньшая боковая сторона равна большему основанию. Найдите периметр трапеции, если острый угол трапеции равен 30º. ​

Показать ответ
Ответ:
КУРОПАТКА777
КУРОПАТКА777
20.10.2020 10:49

Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:

а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.

б) уравнение медианы BM.  

Находим координаты точки М как середины стороны АС.

М(((-2+1)/2; (1+3)/2) = (-0,5; 2).

Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).

Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.

Оно же в общем виде 7у – 2х – 15 = 0.

И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).

в) cos угла BCA.  

Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.

Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.

cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.

г) уравнение высоты CD.

Находим уравнение стороны АВ.

Вектор AB = ((3-(-2)); (3-1)) = (5; 2).

Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).

Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.

0 = (-5/2)*1 + b. Отсюда b = 5/2.  

Уравнение CD: y = (-5/2)x + (5/2).

д) длина высоты СD.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d = (A·Mx + B·My + C)/√A2 + B2

Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:  

2х – 5у + 9 = 0.

d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =

= 11/√29 = 11√29/29 ≈ 2.0426487.

е) площадь треугольника АВС по векторам.

Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:

S= ± (1 /2) *(x1−x3       y1−y3 )

                       (x2−x3      y2−y3 )  

       

 x1−x3       y1−y3  

        x2−x3      y2−y3    

A(−2,1), B(3,3), С(1,0).

S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.  

0,0(0 оценок)
Ответ:
Miss4455
Miss4455
19.10.2022 20:33
Введем дополнительные обозначения:
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R 
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит 
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.

б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R 
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
cos30= \frac{OK}{OQ} \\ \frac{ \sqrt{3} }{2} = \frac{R}{OQ} \\ OQ= \frac{2R}{ \sqrt{3} }
OQ=HD- так как DQOH-параллелограмм
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} }
средняя линия трапеции =(а+в)/2
OQ=( BC+AD )/2 \\ \frac{2R}{ \sqrt{3} } =(2+R+ \frac{2R}{ \sqrt{3} }) /2= \frac{2 \sqrt{3}+R \sqrt{3}+2R}{ \sqrt{3}} /2 \\ \frac{2R}{ \sqrt{3} }=\frac{2 \sqrt{3}+R \sqrt{3}+2R}{ 2\sqrt{3}}|*2 \sqrt{3} \\ \\ 4R=2\sqrt{3} +R\sqrt{3} +2R \\ 2R-R\sqrt{3} =2\sqrt{3} \\ R(2-\sqrt{3} )=2\sqrt{3} \\ \\ R= \frac{2\sqrt{3} }{2-\sqrt{3} } = \frac{2\sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}= \frac{4\sqrt{3}+2*3}{2 ^{2} -\sqrt{3}^{2} } = \frac{4\sqrt{3}+6}{4-3 }=4\sqrt{3}+6
AD=AH+HD=R+ \frac{2R}{ \sqrt{3} } =R+\frac{2R \sqrt{3} }{\sqrt{3}*\sqrt{3}} = \frac{3R}{3} + \frac{2\sqrt{3}R}{3} = \frac{3R+2\sqrt{3}R}{3} = \\ \frac{3(4\sqrt{3}+6)+2 \sqrt{3} (4\sqrt{3}+6)}{3} = \frac{12 \sqrt{3}+18+24+12 \sqrt{3} }{3} = \frac{24 \sqrt{3}+42 }{3} =8 \sqrt{3} +14 \\ OTBET: 8 \sqrt{3} +14

Решите,мне нужно с рисунком. ☺дана равнобедренная трапеция abcd с основаниями ad и bc. окружность с
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота