Ну, первая проще некуда - умножаем 4*6 - это площадь одной боковой стороны, и еще умножаем на 4(стороны) Итого 4*6*4=96см^2
2. по апофеме и высоте вычисляем половину длины стороны основания пирамиды. Это по формуле (10^2-8^2) и все это под корнем. получается 6, еще умножаем на 2=12 (сторона основания)
далее вычисляем площадь по формуле: S=(1/2)PL+Sосн, где Р-периметр основания (12*4=48), L-апофема, Sосн-площадь основания (12*12=144). Итого (1/2)*48*10+144=384см^2
3 не знаю до конца, можно вычислить верхние и нижние диагонали по той же формуле, что и в пред. задаче, получается 8корней из 2 и 18корней из 2 соответственно. Если найдешь высоту усеченной пирамиды, можно будет узнать площадь сечения.
Ну, первая проще некуда - умножаем 4*6 - это площадь одной боковой стороны, и еще умножаем на 4(стороны) Итого 4*6*4=96см^2
2. по апофеме и высоте вычисляем половину длины стороны основания пирамиды. Это по формуле (10^2-8^2) и все это под корнем. получается 6, еще умножаем на 2=12 (сторона основания)
далее вычисляем площадь по формуле: S=(1/2)PL+Sосн, где Р-периметр основания (12*4=48), L-апофема, Sосн-площадь основания (12*12=144). Итого (1/2)*48*10+144=384см^2
3 не знаю до конца, можно вычислить верхние и нижние диагонали по той же формуле, что и в пред. задаче, получается 8корней из 2 и 18корней из 2 соответственно. Если найдешь высоту усеченной пирамиды, можно будет узнать площадь сечения.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает