Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
тогда
ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы),
а раз ВС = В1С1, то все педидущие четыре отрезка равны:
ВМ = МС = В1М1 = М1С1
далее уголВ = углуВ1(соответствующие углы равных треугольников)
АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними)
а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
Дан треугольник АВС: АВ=ВС. O- центр вписанной окружности ВО=34 см, ОН=16 см.
ВН - высота равнобедренного треугольника. ВН=50 см
К, Т.Н- точки касания окружности со сторонами треугольника.
ОК,ОН,ОТ - радиусы вписанной окружности
Найти площадь треугольника.
Решение.
Высота равнобедренного треугольника является и биссектрисой и медианой.
Значит АН=НС
Угол АВН равен углу СВН.
Треугольники КВО и ВОТ равны между собой по катету (ОК=ОТ) и острому углу.
Из равенства треугольников ВК=ВТ
По теореме Пифагора ВТ²=ВО²-ОТ²=34²-16²=(34-16)(34+16)=18·50=900
ВТ=30 см
ВК=ВТ=30 см
Центр вписанной окружности- точка пересечения биссектрис.
Треугольник равнобедренный, угол А равен углу С.
Биссектрисы АО и СО делят эти углы пополам.
Углы КАО, НАО, ТСО, НСО равны между собой.
И треугольники КАО, АОН, НОС, СОТ равны между собой по катету и острому углу.
ОК=ОН=ОТ= r - радиусу вписанной окружности.
Из равенства треугольников АК=АН=НС=СТ= х
Рассмотрим треугольник АВН.
По теореме Пифагора АВ²=АН²+ВН²
(30+х)²=х²+50²
900+60х+х²=х²=2500,
60х=1600
х=80/3
АН=80/3
S=1/2 АС·ВН= АН·ВН=80/3 · 50= 4000/3 кв. см