Основания трапеции равны 3ми 9 м, а высота равна 16 м. Вычисли площадь трапеции. ответ: Площадь трапеции равна 2 M M Длина какого отрезка равна полусумме оснований трапеции? Биссектрисы Высоты Средней линии
№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5
Порассуждаем. Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой. Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой. В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒ В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см. 10+10>5 – неравенство сторон треугольника соблюдено.
№1 трапеция АВСД, СД=25, ОД=15, ОВ=9, треугольник АОВ подобен треугольнику ДОС по двум равным углам (уголАОВ=уголДОС как вертикальные, уголДСО=уголВАО как внутренние разносторонние), АВ/СД=ОВ/ОД, АВ/25=9/15, АВ=25*9/15=15, ДС/АВ=ОС/ОА, 25/15=ОС/ОА, 5/3=ОС/ОА, площади подобных треугольников относятся как квадраты подобных сторон, площадь АОВ/площадь ДОС=АВ в квадрате/СД в квадрате=225/625=9/25
№2 треугольник АВС подобен трецугольнику КМН по третьему признаку (три стороны одного треугольника пропорцианальны трем сторонаим другого), АВ/КМ=8/10=4/5, ВС/МН=12/15=4/5, АС/КН=16/20=4/5, пропорции равны, вподобных треугольниках против подобных сторон лежат равные углы, уголА=уголК=80, уголВ=уголМ=60, уголС=уголН=(180-80-60)=40
№3 трапеция АВСД, ВС=4, АД=12, площадь АОД=45, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголОАД=уголВСО как внутренние разносторонние), площади относятся как квадраты сторон, ВС/АД=4/12=1/3, площадь ВОС/площадь АОД=(ВС/АД) в квадрате, площадь ВОС/45=1/9, площадь ВОС=45*1/9=5
Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой.
Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой.
В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒
В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см.
10+10>5 – неравенство сторон треугольника соблюдено.