Основания трапеции равны 9 и 45, одна из боковых сторон равна 25, а тангенс угла между ней и одним из оснований равен 2корень из 77 деленое на 77. найдите площадь трапеции
Сделаем рисунок и рассмотрим его. Пусть ВМ и АD пересекаются в точке Н. Медиана ВМ делит АС на два равных отрезка АМ=СМ. АМ=4:2=2 АН в треугольнике АВМ является высотой - угол АНВ - прямой , т.к. АD перпендикулярна ВМ. Но она же и медиана, т.к. по условию ВН=НМ, следовательно, треугольник ВАМ - равнобедренный ( в равнобедренном треугольнике медиана, высота и биссектриса, проведенные из вершины угла против основания - совпадают, и, наоборот, если медиана и высота треугольника равны, то этот треугольник - равнобедренный). АВ=АМ=2 ( с нескольких попыток не удалось загрузить рисунок, но он очень простой, несложно выполнитьсамостоятельно)
Для удобства обозначим треугольник АВС, где АС-основание, а АВ-искомая сторона. Из вершины В проводим высоту и называем ее ВD, а также медиану и называем ее ВЕ. В получившемся прямоугольном (т.к. BD-высота) треугольник ЕВD нам известна гипотенуза ВЕ=13см и противолежащий катет ВD=12см. Находи угол ВЕD: sinBED=12/13=0,923076, arcsinBED=67,38 градусов. Находим отрезок ED через cosBED=х/13. х=cosBED*13=cos(67,38)*13=5 см. Рассмотрим прямоугольный треугольник АВD. Сторона АD=АЕ+ЕD. Т.к. медиана ВЕ делит основание АС=60 см пополам, то отрезок АЕ=60/2=30 см. АD=30+5=35 см. Согласно теореме Пифагора в прямоугольном треугольнике АВD квадрат гипотенузы АВ равен сумме квадратов катетов ВD и АD, т.е. АВ=ВD+AD АВ= АВ= АВ===37 см.
Пусть ВМ и АD пересекаются в точке Н.
Медиана ВМ делит АС на два равных отрезка АМ=СМ.
АМ=4:2=2
АН в треугольнике АВМ является высотой - угол АНВ - прямой , т.к. АD перпендикулярна ВМ.
Но она же и медиана, т.к. по условию ВН=НМ, следовательно, треугольник ВАМ - равнобедренный
( в равнобедренном треугольнике медиана, высота и биссектриса, проведенные из вершины угла против основания - совпадают, и, наоборот, если медиана и высота треугольника равны, то этот треугольник - равнобедренный).
АВ=АМ=2
( с нескольких попыток не удалось загрузить рисунок, но он очень простой, несложно выполнитьсамостоятельно)
В получившемся прямоугольном (т.к. BD-высота) треугольник ЕВD нам известна гипотенуза ВЕ=13см и противолежащий катет ВD=12см. Находи угол ВЕD: sinBED=12/13=0,923076, arcsinBED=67,38 градусов. Находим отрезок ED через cosBED=х/13. х=cosBED*13=cos(67,38)*13=5 см.
Рассмотрим прямоугольный треугольник АВD. Сторона АD=АЕ+ЕD. Т.к. медиана ВЕ делит основание АС=60 см пополам, то отрезок АЕ=60/2=30 см.
АD=30+5=35 см. Согласно теореме Пифагора в прямоугольном треугольнике АВD квадрат гипотенузы АВ равен сумме квадратов катетов ВD и АD, т.е.
АВ=ВD+AD
АВ=
АВ=
АВ===37 см.