Основаниями правильной усеченной пирамиды служат квадраты со сторонами a и b (a>b ). Боковые ребра наклонены к плоскости основания под углом а. Определите величину двугранных углов при сторонах оснований.
Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
ответ: 9√21 (см²)
Объяснение (подробно): Нарисуем треугольник АВС. Пусть АВ=3√7, ВС=12, О- точка пересечения биссектрис из А и С.
Рассмотрим треугольник АОС. Угол ЕОС - внешний. По свойству внешнего угла сумма двух внутренних углов, не смежных с ним, равна 30°. Эти углы - половины углов при стороне АС треугольника АВС .Поэтому угол ВАС+ВСА=60°. Из суммы углов треугольника угол АВС=180°-60°=120°.
Одна из формул площади треугольника S=0,5•a•b•sinα, где а и b - стороны, α – угол между ними. S (ABC)=0,5•3√7•12•√3/2=9√21 (см²)
=========
Задача решена по данному в вопросе условию. Возможно, условие дано с ошибкой и одна из сторон не 3√7, а 7√3. Тогда площадь будет иной. Вычислите ее самостоятельно.
ответ: АР=8
Объяснение (подробно):
ТР - биссектриса ⇒ ∠КТР=∠РТМ.
Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
АР=х=8.