Площадь боковой поверхности правильного тетраэдра равна: Sбок=(3/4)√3а2, где а- длина его стороны. 108√3=(3/4)√3а2. Находим а=√(108*4/3)=√(36*4)=6*2=12 см. Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см Радиус окружности вписанной в правильный ▲, равен; r=b/(2√3)=6/(2√3)=3/√3=3 см. Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов. Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2
Площадь боковой поверхности правильного тетраэдра равна: Sбок=(3/4)√3а2, где а- длина его стороны. 108√3=(3/4)√3а2. Находим а=√(108*4/3)=√(36*4)=6*2=12 см. Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см Радиус окружности вписанной в правильный ▲, равен; r=b/(2√3)=6/(2√3)=3/√3=3 см. Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов. Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2
Sбок=(3/4)√3а2, где а- длина его стороны.
108√3=(3/4)√3а2.
Находим а=√(108*4/3)=√(36*4)=6*2=12 см.
Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см
Радиус окружности вписанной в правильный ▲, равен;
r=b/(2√3)=6/(2√3)=3/√3=3 см.
Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов.
Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2
Sбок=(3/4)√3а2, где а- длина его стороны.
108√3=(3/4)√3а2.
Находим а=√(108*4/3)=√(36*4)=6*2=12 см.
Стороны ▲-ка ДОТ равны половине а, то есть B=12/2=6 см
Радиус окружности вписанной в правильный ▲, равен;
r=b/(2√3)=6/(2√3)=3/√3=3 см.
Радиус в точке касания делят окружность на 3 дуги, градусная мера которых составляет 360 градусов/3=120 градусов.
Площадь сектора, ограниченного двум радиусами, проведёнными в точке касания и другой окружности большей 180 градусов-это 2/3 площади круга: S=(2/3)Nr2=N*(2*(√3)2/3=2N см2