1) - 3 2) (Многооо очень) Сумма двух острых углов прямоугольного треугольника равна 90º Сумма углов треугольника равна 180º, а прямой угол равен 90º, поэтому сумма двух острых углов прямоугольного треугольника равна 90º. Катет прямоугольного треугольника, лежащий против угла в 30º, равен половине гипотенузы. Рассмотрим прямоугольный треугольник ABC, в котором A — прямой, B = 30º и, значит, C = 60º. Докажем, что AC = 1/2 BC. Приложим у треугольнику ABC равный ему треугольник ABD, как показано на рисунке 1. Получим треугольник BCD, в котором B = D = 60º, поэтому DC = BC. Но AC = 1/2 DC. Следовательно, AC = 1/2 BC, что и требовалось доказать. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30º. 3)Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. В равнобедренном треугольнике углы при основании равны. 4)Ввысота может лежать вне треугольника, а остальное только внутри 5) Не знаю.
Проведём диагональ АС, ттогда треугольники АСД и АВС равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол САД+АСД=180-39=141 градус, тогда угол АСД=САД=141:2=70,5 градусам. Рассмотрим треуг. АВС: т.к угол В равен 3 гр,то ВАС+ВСА=180-3=177 градусов,по теореме о сумме углов треуг. т к треуг равнобедренный, то его углы при основании равны,тогда угол ВАС=ВСА=177:2=88,5 градусов тогда угол А равен сумме углов ВАС и САД т.е 88.5 градусов+70.5 градусов=159 градусов ответ: угол А=159 градусов
2) (Многооо очень) Сумма двух острых углов
прямоугольного треугольника
равна 90º
Сумма углов треугольника равна
180º, а прямой угол равен 90º,
поэтому сумма двух острых углов
прямоугольного треугольника
равна 90º.
Катет прямоугольного
треугольника, лежащий против
угла в 30º, равен половине
гипотенузы.
Рассмотрим прямоугольный
треугольник ABC, в котором A
— прямой, B = 30º и, значит,
C = 60º. Докажем, что AC = 1/2
BC.
Приложим у треугольнику ABC
равный ему треугольник ABD, как
показано на рисунке 1. Получим
треугольник BCD, в котором B
= D = 60º, поэтому DC = BC. Но
AC = 1/2 DC. Следовательно, AC =
1/2 BC, что и требовалось
доказать.
Если катет прямоугольного
треугольника равен половине
гипотенузы, то угол, лежащий
против этого катета, равен 30º.
3)Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
В равнобедренном треугольнике углы при основании равны.
4)Ввысота может лежать вне треугольника, а остальное только внутри
5) Не знаю.
Рассмотрим треуг. АВС:
т.к угол В равен 3 гр,то ВАС+ВСА=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол ВАС=ВСА=177:2=88,5 градусов
тогда угол А равен сумме углов ВАС и САД т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол А=159 градусов