Основи рівнобічної трапеції дорівнюють 8 см і 18 см. Через центр О кола, вписаного в цю трапецію, проведено перпендикуляр OK до площини трапеції, OK = 8 см. Знайдіть відстань від точки К до сторiн трапеції.
1) Медіана поділяє основу на два рівних відрізки МС=МВ=х
2) Медіана в рівнобедреному трикутнику, опущена з вершини є також висотою та бісектрисою, тому медіана АМ утворює 2 рівних прямокутних ΔАМС та ΔАМВ з ∠САМ=∠ВАМ=120/2=60°.
Розглянемо прямокутний ΔАМС.
Згідно з умовами завдання, АМ=2х-8.
Складемо рівняння, використовуючи функцію котангенсу:
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
16/(2√3-1) см
Объяснение:
1) Медіана поділяє основу на два рівних відрізки МС=МВ=х
2) Медіана в рівнобедреному трикутнику, опущена з вершини є також висотою та бісектрисою, тому медіана АМ утворює 2 рівних прямокутних ΔАМС та ΔАМВ з ∠САМ=∠ВАМ=120/2=60°.
Розглянемо прямокутний ΔАМС.
Згідно з умовами завдання, АМ=2х-8.
Складемо рівняння, використовуючи функцію котангенсу:
ctg∠CAM=AM/CM ⇒
ctg 60°=(2х-8)/х
х=(2х-8)/ctg 60°
х=2х·√3 - 8√3
(2√3-1)х=8√3
х=8√3/(2√3-1)
Тоді за формулою сінусів:
АС=СМ÷sin∠CAM=8√3/(2√3-1)÷√3·2=16/(2√3-1) см
пусть АВ=х
тогда ВС=21-х
ΔАВС - прямоугольный
по теореме Пифагора:
х²+(21-х)²=(√221)²
х²+(441-42х+х²)=221
х²+441-42х+х²-221=0
2х²-42х-220=0
х²-21х-110=0
Д=(-21)²-4*1*(-110)=441-440=1
х1=(21+1)/2=22/2=11
х2=(21-1)/2=20/2=10
если АВ=10, то ВС=21-10=11
если АВ=11, то ВС=21-11=10
⇒ в любом случае одна сторона 10, другая 11
пусть АВ=10, а ВС=11
проведем высоту ВН
есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е.
ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221
рассмотрим ΔАВС
его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55
ΔАВС=ΔАСД
⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110