Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.
Находим уравнение прямой АВ:
Из уравнения прямой получимs = {6; 0; 8}- направляющий вектор прямой; A = (1, 2, -3)- точка лежащая на прямой.Тогда OA = {1 - 0; 2 - 0; -3 - 0} = {1; 2; -3}
OA ×s = |i j k |
|1 2 -3
| 6 0 8 | =
= i (2·8 - (-3)·0) - j (1·8 - (-3)·6) + k (1·0 - 2·6) =
= i (16 - 0) - j (8 - (-18)) + k (0 - 12) = {16; -26; -12}.
d = |M0M1×s|/|s| = √(16² + (-26)² + (-12)²)/√(6² + 0² + 8²) = √1076/√100 =
= √269/5 ≈ 3,280244.