Основи рівнобічної трапеції відносяться як 3:2, її висота і бічна сторона відповідно дорівнюють 5см і 7см. Знайти периметр трапеції, якщо її площа дорівнює 275см²
Пусть АВ=А1В1=х, ВС=В1С1=у, ВВ1=h, ∠В=∠В1=α. По условию В1М=х/2, В1N=2у/3, ВК=у/3. Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4. S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6. S2=S(BHK)=S(B1MN)/k²=xy·sinα/24. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3. Объём пирамиды ВНКВ1MN: V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72. Объём призмы АВСА1В1С1: V2=xyh·sinα/2. Объём многогранника АСКНА1С1NM: V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72. V1:V3=7:29 - это ответ.
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
По условию В1М=х/2, В1N=2у/3, ВК=у/3.
Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4.
S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6.
S2=S(BHK)=S(B1MN)/k²=xy·sinα/24.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3.
Объём пирамиды ВНКВ1MN:
V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72.
Объём призмы АВСА1В1С1:
V2=xyh·sinα/2.
Объём многогранника АСКНА1С1NM:
V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72.
V1:V3=7:29 - это ответ.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).