Пусть даны наклонные АВ и АС и перпендикуляр к плоскости АО. Если х - коэффициент пропорциональности, то АВ=5х, АС=6х. Проецией наклонной АВ является отрезок ВО=4 см, а проекцией наклонной АС является отрезок СО=3корня из3. Найдем АО из треугольника АВО по теореме Пифагора: АО^2=AB^2-BO^2=25x^2-16; найдем АО из треугольника АСО по теореме ПИфагора: АО^2=АС^2-CO^2=36x^2-27.Приравняем правые части получившихся выражений 25х^2-16=36x^2-27
11x^2=11
x=1 - коэффициент пропорциональности, то АВ=5 см и АО=3 см
Пусть даны наклонные АВ и АС и перпендикуляр к плоскости АО. Если х - коэффициент пропорциональности, то АВ=5х, АС=6х. Проецией наклонной АВ является отрезок ВО=4 см, а проекцией наклонной АС является отрезок СО=3корня из3. Найдем АО из треугольника АВО по теореме Пифагора: АО^2=AB^2-BO^2=25x^2-16; найдем АО из треугольника АСО по теореме ПИфагора: АО^2=АС^2-CO^2=36x^2-27.Приравняем правые части получившихся выражений 25х^2-16=36x^2-27
11x^2=11
x=1 - коэффициент пропорциональности, то АВ=5 см и АО=3 см
ответ: 3 см
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE:
ΔBAЕ = ΔBCD
По какому признаку доказывается это равенство?
По второму
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы
∠CBD = ∠ABE
иначе, ∠В - общий для этих треугольников.
∠EAB = ∠DCB
По условию AE⊥ BD, CD⊥ BE, значит эти углы равны 90°.
стороны
BC = BA
По какому признаку доказывается равенство ΔAFD и ΔCFE?
По второму
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы
∠FAD = ∠FCE
так как эти углы прямые
∠CEF = ∠ADF
из равенства треугольников ΔBAЕ и ΔBCD.
стороны
AD = CE
AD = BD - BA, CE = BE - BC
BD = BE из равенства треугольников ΔBAЕ и ΔBCD, ВА = ВС по условию, значит AD = CE.
2. Величина угла, под которым перпендикуляр CD пересекает прямую BA — 71°
Угол, под которым CD пересекает ВА, - это ∠ADF.
Угол, под которым АЕ пересекает ВС, - это ∠СЕF, по условию ∠CEF = 71°.
∠ADF = ∠CEF = 71° из равенства треугольников AFD и CFE.