Основою піраміди є прямокутник, одна із сторін якого дорівнює а. Кут між цією стороною та діагоналлю прямокутника дорівнює альфа. Кожне бічне ребро піраміди утворює з площиною основи кут бета. Знайдіть висоту піраміди.
Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
Надеюсь решила, правильно)
Решение: точка О - центр вписанной окружности радиусом r
Точка F - основание высоты равнобедренного треугольника на стороне ac
из точки Е на стороне ab - высоту треугольника abO. ее длинна равна r
Треугольники abF и ebO - подобны по двум углам.
Пропорция Fb/ab = eb/Ob
Fb=Ob+FO=15+r
ab=30
Ob = 15
(15+r)/30 = / 15
После приведения
225+30r+ = 900 - 4
+ 6r -135 =0
Решение квадратного уравнения - два ответа: 9 и -15
r = 9
Зная радиус находим длину биссектрисы Fb = 15+9 =24
В треуг. abF по теореме Пифагора сторона af = 18
P = 30+30+18*2 = 96
ответ:96
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)