Основою піраміди є прямокутник зі сторонами 12 см і 30 см. Знайдіть площу бічної поверхні піраміди, якщо її висота дорівнює 8 см, а бічні ребра утворюють з площиною основи рівні кути.
9)Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH). Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x, то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.). Из прямоугольного треугольника BDH по теореме Пифагора находим BH: BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2). ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.). Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH: DH=√DC^-HC^2=6 (см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.). ответ: 54
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54
Дано. Угол при основании равен 60°.
Найдите угол между боковыми сторонами равнобедренного
треугольника
180° - 2*60° = 180° - 120° = 60°
***
2) найдите углы треугольника если они пропорциональны числам 3,5,7.
Решение.
пусть один угол равен 3х, второй 5х, а третий - 7х.
Сумма углов равна 180°
3х+5х+7х=180°;
15х=180°;
х=12°
Один из углов равен 3х=3*12=36°;
другой равен 5х=5*12= 60°;
третий угол равен 7х=7*12=84°.
Проверим:
36°+60°+84°= 180°. Всё верно!
***
найдите неизвестный угол треугольника если у него два угла равны 72° и 53°.
Решение.
Сумма углов треугольника равна 180°
180°- (72° + 53°) = 55°.
***
4) может ли быть в треугольнике 2 тупых угла?
Нет. Каждый тупой угол больше 90°. А сумма трех углов должна быть не более 180°.
***
5) углы прямоугольного равнобедренного треугольника
равны: (180° - 90°)/2 =90°/2= 45°.