Задача на самом деле очень простая, если знать, что биссектриса отсекает от параллелограмма равнобедренный треугольник. Однако свойство это надо постоянно доказывать. Итак, поведем биссектрису ВК в параллелограмме АВСD. ∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника). ∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма), а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ). Тогда СD так же равна 14(опр. параллелогр.) AD=ВС=14+7=21 Тогда найдем периметр: 21+14+21+14=70
В равнобедренном тр-ке боковые стороны равны. Биссектриса в равнобедренном тр-ке является его высотой и медианой. Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка.. Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х) Х^2 = 17^2 - 15^2 X^2 = 289 - 225 = 64 X = 8 Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2) Искомый периметр тр-ка = 17 +17+ 16= 50 (см)
Итак, поведем биссектрису ВК в параллелограмме АВСD.
∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника).
∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма),
а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ).
Тогда СD так же равна 14(опр. параллелогр.)
AD=ВС=14+7=21
Тогда найдем периметр: 21+14+21+14=70
Биссектриса в равнобедренном тр-ке является его высотой и медианой.
Биссектриса равнобедренного тр-ка делит его на 2 равных прямоугольных тр-ка..
Рассмотрим один из них: 1 катет = = биссектрисе =15см, второй катет= половине основания данного в задаче тр-ка = Х, гипотенуза = боковой стороне = 17 см. По теореме Пифагора находим катет (Х)
Х^2 = 17^2 - 15^2
X^2 = 289 - 225 = 64
X = 8
Искомая S тр-ка = 2( 8*15)/ 2 = 120(см^2)
Искомый периметр тр-ка = 17 +17+ 16= 50 (см)