Основою піраміди є трикутник зі сторонами 12 см, 16 см і 20 см. бічне ребро, яке лежить проти середньої за довжиною сторони основи, перпендикулярне до площини основи і дорівнює 12 см. знайдіть площу бічної поверхні піраміди.
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
1)72градуса
2)20,90,90,160
3)5,10
4)40
Объяснение:
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
найдем периметр = 12×2 + 8×2=40