Основою піраміди є трикутник зі сторонами 13 см,14см,15 см. усі бічні грані однаково нахилені до основи пііди. який кут утворюють бічні грані з основою,якщо висота піраміди дорівнює 4 см?
Вирішимо задачу шляхом додаткового побудови навколо заданої геометричної фігури (трикутники), щоб використовувати властивості нової утвореної фігури (прямокутники) для рішення цієї задачі з геометрії.
Спочатку добудуємо прямокутний трикутник до прямокутника.
В результаті додатковой побудови катети прямокутного трикутника одночасно є сторонами прямокутника, а гіпотенуза - його діагоналлю.
Далі врахуємо наступні властивості трикутника і прямокутника:
Сума кутів трикутника дорівнює 180 градусамДіагоналі прямокутника в точці перетину діляться навпілДіагоналі прямокутника рівні
Величина одного з кутів трикутника задана в умові задачі. Оскільки трикутник за умовами прямокутний, то ми можемо знайти величину третього кута, знаючи, що сума кутів трикутника дорівнює 180 градусам.
Оскільки кут CAB = 20°, то кут ABC = 180 - 90 - 20 = 70°
Таким чином, ми знайшли градусну міру кута B у трикутнику ABC.
Розглянемо трикутник COA. Він рівнобедрений, так як його сторони - це половини діагоналей прямокутника. Це випливає з властивостей прямокутника. Так як діагоналі прямокутника рівні, а в точці перетину вони діляться навпіл, то половини рівних відрізків будуть також однакові. Оскільки в равнобедренном трикутнику кути при основі рівні, то:
∠OCA = ∠OAC = 20º
Розглянемо трикутник BKC. CK є висотою трикутника ABC, проведеної до гіпотенузи. Значить кут BKC - прямий, тобто дорівнює 90 градусам, а сам трикутник BKC - прямокутний. Оскільки трикутник BKC - прямокутний, то кут BCK = 180 - 90 - 70 = 20° . (Це випливає з того, що сума кутів трикутника 180 градусів, кут BKC - прямий, а величину кута B ми знайшли раніше)
Оскільки кут BCA - прямий, то його градусна міра дорівнює 90 градусів і, одночасно, дорівнює сумі градусних мір складових його кутів: BCK, KCO та OCA.
Величину кута BCK ми тільки що знайшли, вона становить 20 градусів, величину кута OCA ми також знайшли раніше і вона теж становить 20 градусів.
Звідки:
20° + 20° + ∠KCO = 90°
∠KCO = 50°
Відповідь: Кут між медіаною і бісектрисою заданого прямокутного трикутника дорівнює 50 градусів.
Рішення.
Вирішимо задачу шляхом додаткового побудови навколо заданої геометричної фігури (трикутники), щоб використовувати властивості нової утвореної фігури (прямокутники) для рішення цієї задачі з геометрії.
Спочатку добудуємо прямокутний трикутник до прямокутника.
В результаті додатковой побудови катети прямокутного трикутника одночасно є сторонами прямокутника, а гіпотенуза - його діагоналлю.
Далі врахуємо наступні властивості трикутника і прямокутника:
Сума кутів трикутника дорівнює 180 градусамДіагоналі прямокутника в точці перетину діляться навпілДіагоналі прямокутника рівні
Величина одного з кутів трикутника задана в умові задачі. Оскільки трикутник за умовами прямокутний, то ми можемо знайти величину третього кута, знаючи, що сума кутів трикутника дорівнює 180 градусам.
Оскільки кут CAB = 20°, то кут ABC = 180 - 90 - 20 = 70°
Таким чином, ми знайшли градусну міру кута B у трикутнику ABC.
Розглянемо трикутник COA. Він рівнобедрений, так як його сторони - це половини діагоналей прямокутника. Це випливає з властивостей прямокутника. Так як діагоналі прямокутника рівні, а в точці перетину вони діляться навпіл, то половини рівних відрізків будуть також однакові. Оскільки в равнобедренном трикутнику кути при основі рівні, то:
∠OCA = ∠OAC = 20º
Розглянемо трикутник BKC. CK є висотою трикутника ABC, проведеної до гіпотенузи. Значить кут BKC - прямий, тобто дорівнює 90 градусам, а сам трикутник BKC - прямокутний. Оскільки трикутник BKC - прямокутний, то кут BCK = 180 - 90 - 70 = 20° . (Це випливає з того, що сума кутів трикутника 180 градусів, кут BKC - прямий, а величину кута B ми знайшли раніше)
Оскільки кут BCA - прямий, то його градусна міра дорівнює 90 градусів і, одночасно, дорівнює сумі градусних мір складових його кутів: BCK, KCO та OCA.
Величину кута BCK ми тільки що знайшли, вона становить 20 градусів, величину кута OCA ми також знайшли раніше і вона теж становить 20 градусів.
Звідки:
20° + 20° + ∠KCO = 90°
∠KCO = 50°
Відповідь: Кут між медіаною і бісектрисою заданого прямокутного трикутника дорівнює 50 градусів.
Объяснение:
Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.