Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc)
Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5.
Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".
Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен
r = (3х + 4х - 5х)/2 = х;
То есть x = 8, и стороны ВСР таковы 24, 32, 40.
На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку у "чисто" египетсткого треугольника 3,4,5 r = 1).
В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.
Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc)
Smkpc = Sapc-Sakm = 3/4 - 3/8 = 3/8.
Тогда Sakm/Smkpc = (3/8):(3/8) = 1/1.
Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5.
Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".
Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен
r = (3х + 4х - 5х)/2 = х;
То есть x = 8, и стороны ВСР таковы 24, 32, 40.
На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку у "чисто" египетсткого треугольника 3,4,5 r = 1).
В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.