В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
loloshovich83
loloshovich83
13.11.2021 13:07 •  Геометрия

Основою прямої призми ABCKLN є трикутник.Площа грані AKLB дорівнює 463–√ см2, кут ACB=120°, AC=CB= 6 см. Обчисли площу основи і висоту призми

Показать ответ
Ответ:
gmurzakaevap06yh1
gmurzakaevap06yh1
25.11.2022 20:05
Площадь боковой поверхности цилиндра: S=2πRH=8√3π ⇒ Н=4√3/R.
Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R.
В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4).
АВ=2АМ=2√(R²-4).
По условию АВ=Н. Объединим оба полученные уравнения высоты.
4√3/R=2√(R²-4), возведём всё в квадрат,
48/R²=4(R²-4),
12=R²(R²-4),
R⁴-4R²-12=0,
R₁²=-2, отрицательное значение не подходит.
R₂²=6.
Н=2√(6-4)=2√2 см.
Площадь искомого сечения равна: S=H²=8 см² - это ответ.
0,0(0 оценок)
Ответ:
Dan1L1an
Dan1L1an
18.05.2021 08:45
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота