Основою прямої призми є прямокутний трикутник авс. ас=12 см, ав=13 см. висота призми дорівнює найменшій стороні її основи. 1)знайдіть довжину бічного ребра цієї призми. 2)знайдіть площу повної поверхні цієї призми
Формула линейной функции имеет вид y=kx+b, где х — независимая переменная (абсцисса точки); y — зависимая переменная (ордината точки); k, b — числовые коэффициенты.
Числовой коэффициент b показывает, в какой точке график пересекает ось ординат (Оу). В данном случае b = 3. Наша формула обретет вид:
Числовой коэффициент k отвечает за наклон графика линейной ф-ции:
Если график ф-ции образует с положительной осью Ox острый угол, тогда коэффициент k > 0, если тупой — k < 0.
В данном случае k < 0, то есть k — отрицательное число.
Из формулы выразим k:
Возьмём любую удобную нам точку на прямой и подставим ее координаты в полученную формулу:
A (4; 0)
В итоге, формула линейной функции получится следующей:
Объяснение:
1) Вектор 3a - b = 3•{ 5 ; 0 ;- 2 } - { 1 ; 2 ; 1 } = { 15 ; 0 ;- 6 } - { 1 ; 2 ; 1 } =
= { 14 ;- 2 ;- 7 } ; 3a - b = { 14 ;- 2 ;- 7 } .
2) Вектор 3a + 2b = 3•{ 2 ; 2 ; 1 } + 2•{ 3 ;- 2 ; 1 } = { 6 ; 6 ; 3 } +
+ { 6 ;- 4 ; 2 } = { 12 ; 2 ; 5 } ; 3a + 2b = { 12 ; 2 ; 5 } .
3) A( 1 ; 3 ;- 2 ) i B( 3 ; 4 ; 1 ) ; вектор АВ - ?
AB = { 3 - 1 ; 4 - 3 ; 1 + 2 } = { 2 ; 1 ; 3 } .
4) . . . .
Вектор d = a + b - c = { 1 ; 2 ; 3 } + {- 1 ; 2 ;- 3 } - { 5 ; 2 ;- 2 } =
= { 0 ; 4 ; 0 } - { 5 ; 2 ;- 2 } = {- 5 ; 2 ; 2 } ; d = {- 5 ; 2 ; 2 } ;
| d | = √[ (- 5 )² + 2² + 2² ] = √33 ; | d | = √33 .
Формула линейной функции имеет вид y=kx+b, где х — независимая переменная (абсцисса точки); y — зависимая переменная (ордината точки); k, b — числовые коэффициенты.
Числовой коэффициент b показывает, в какой точке график пересекает ось ординат (Оу). В данном случае b = 3. Наша формула обретет вид:
Числовой коэффициент k отвечает за наклон графика линейной ф-ции:
Если график ф-ции образует с положительной осью Ox острый угол, тогда коэффициент k > 0, если тупой — k < 0.
В данном случае k < 0, то есть k — отрицательное число.
Из формулы выразим k:
Возьмём любую удобную нам точку на прямой и подставим ее координаты в полученную формулу:
A (4; 0)В итоге, формула линейной функции получится следующей: