Основою прямої призми є рівнобедрений трикутника з основою 8 см і висотою, проведеною до неї, завдовжки 3см Знайдіть площу бічної поверхні призми, якщо її висота дорівнюе 6 см )))
т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать
∠ABC + ∠ACB = 180° - α
∠IBC + ∠ICB = (180° - α)/2 = 90° - α/2 (т.к. центр вписанной окружности лежит в точке пересечения биссектрис)
∠BIC = 180° - (∠IBC + ∠ICB) = 180° - 90° + α/2 = 90° + α/2
∠BKC = 180° - ∠BIC = 180° - 90° - α/2 = 90° - α/2 (сумма противоположных углов четырехугольника вписанного в окружность равна 180°)
∠BOC - центральный углу ∠BKC => ∠BOC = 2*∠BKC = 2*(90° - α/2) = 180° - α
т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать
ответ: доказано.
Треугольник АОВ : 180-70=110 градусов -угол ОАВ + угол ОВА
110:2=55 градусов - угол ОАВ или угол ОВА
Треугольник ВОС : 180-160=20 градусов - угол ОВС + угол ОСВ
20:2=10 градусов - угол ОВС или угол ОСВ
Треугольник АОС : 180-130=50 градусов - угол ОСА + угол ОАС
50:2=25 градусов - угол ОСА или угол ОАС
Угол А = угол ОАС + угол ОАВ = 25+55=80 градусов
Угол В = угол ОВА + угол ОВС = 55+10=65 градусов
Угол С = угол ОСА + угол ОСВ = 25+10=35 градусов