1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
Для облегчения выкладок сначала рассмотрим подобный треугольник со сторонами в три раза меньше, найдем его площадь, а результат затем удевятерим (ведь площади подобных фигур относятся как квадрат коэффициента подобия). Итак, берем стороны a=13; b=14; c=15. Воспользуемся формулой Герона S^2=p(p-a)(p-b)(p-c) (я написал S^2, чтобы не писать корень в правой части), где p - полупериметр.
p=(13+14+15)/2=21; p-a=8; p-b=7; p-c=6; S^2=21·8·7·6=7^2·3^2·4^2=84^2⇒S=84. Осталось результат умножить на 9.
Воспользуемся формулой Герона
S^2=p(p-a)(p-b)(p-c) (я написал S^2, чтобы не писать корень в правой части), где p - полупериметр.
p=(13+14+15)/2=21; p-a=8; p-b=7; p-c=6;
S^2=21·8·7·6=7^2·3^2·4^2=84^2⇒S=84.
Осталось результат умножить на 9.
ответ: 756