Так как рисунок с расположением точек K, M, N отсутствует, пусть K∈AB; M∈BC; N∈AC. Радиусы в точку касания образуют прямые углы с касательными: OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒ ∠MON = ∪MN = 110° ∠KON = ∪KN = 120°
1) Уравнение окружности с центром в точке (х_0, у_0) и радиусом r имеет вид: (х-х_0)^2+(у-у_0)^2=r^2. В нашем случае х_0=2, у_0=-1, r=2. Подставляя все значения в уравнение окружности, получим: (х-2)^2+(у+1)^2=4 - искомое уравнение окружности. 2) Точка А будет принадлежать окружности, если ее координаты х=2 и у=-3 будут удовлетворять уравнению окружности. Проверим это, подставляя х=2 и у=-3 в уравнение окружности, которое мы получили: (2-2)^2+(-3+1)^2=4 0^2+(-2)^2=4 0+4=4 4=4-верное равенство. Таким образом, точка А(2,-3) принадлежит окружности (х-2)^2+(у+1)^2=4.
пусть K∈AB; M∈BC; N∈AC.
Радиусы в точку касания образуют прямые углы с касательными:
OK⊥AB; OM⊥BC; ON⊥AC
Градусная мера дуги окружности равна градусной мере центрального угла, который опирается на эту дугу. ⇒
∠MON = ∪MN = 110°
∠KON = ∪KN = 120°
Сумма углов четырехугольника
(n - 2)*180°=(4 - 2)*180° = 2*180° = 360°
Четырехугольник CMON.
∠С = 360° - ∠ONC - ∠OMC - ∠MON =
= 360° - 90° - 90° - 110°= 70°
Четырехугольник AKON.
∠A = 360° - ∠OKA - ∠ONA - ∠KON =
= 360° - 90° - 90° - 120°= 60°
ΔABC: ∠B = 180° - ∠A - ∠C = 180° - 70° - 60° = 50°
ответ: углы треугольника 50°, 60°, 70°
(х-х_0)^2+(у-у_0)^2=r^2.
В нашем случае х_0=2, у_0=-1, r=2.
Подставляя все значения в уравнение окружности, получим:
(х-2)^2+(у+1)^2=4 - искомое уравнение окружности.
2) Точка А будет принадлежать окружности, если ее координаты х=2 и у=-3 будут удовлетворять уравнению окружности. Проверим это, подставляя х=2 и у=-3 в уравнение окружности, которое мы получили:
(2-2)^2+(-3+1)^2=4
0^2+(-2)^2=4
0+4=4
4=4-верное равенство.
Таким образом, точка А(2,-3) принадлежит окружности (х-2)^2+(у+1)^2=4.