Основою прямой призми є трикутник зі сторонами 12см і 20см та кутом 120. Між ними висота призми =10см. Знайдіть площу бічної поверхні , повної поверхні, об'єм
Два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями."
частные случаи:
1)Все квадраты подобны.
2)Если угол одного ромба равен углу другого ромба, то такие ромбы подобны.
3)Если две соседние стороны одного прямоугольника пропорциональны двум сторонам другого прямоугольника, то такие прямоугольники подобны.
4)Если две соседние стороны одного параллелограмма пропорциональны двум соседним сторонам другого параллелограмма, и углы, образованные этими сторонами, равны, то эти параллелограммы подобны.
5)Если соответственные стороны двух трапеций пропорциональны, то трапеции подобны.
6)Если угол одной трапеции равен углу другой трапеции, а стороны, образующие этот угол, и диагональ, выходящая из этого угла, соответственно пропорциональны двум сторонам другой трапеции, образующим угол, равный первому, и диагонали, выходящей из этого угла, то такие трапеции подобны.
1)Если стороны и диагонали одного выпуклого n – угольника соответственно пропорциональны сторонам и диагоналям другого выпуклого n – угольника, то такие n – угольники подобны.
Признак подобия любых фигур:
1)Понятие подобия можно ввести не только для треугольников, но и для произвольных фигур. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется условие М1N1/MN = k, где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры F. Число k называется коэффициентом подобия фигур F и F1.
Соответствующие диагонали разбивают подобные многоугольники на подобные треугольники.
Доказываем подобие треугольников (с одинаковым коэффициентом и соответствием сторон) - тем самым доказываем подобие многоугольников.
(3) A1B1C1~ABC, A1D1C1~ADC (по двум сторонам и углу между ними)
(4) A1B1C1~ABC (по данным смежным сторонам и углу между ними)
A1D1C1~ADC (по стороне (A1C1, AC) и прилежащим углам)
(6) A1B1C1~ABC, A1B1D1~ABD (по трем пропорциональным сторонам)
∠C1A1D1=∠CAD
C1A1D1~CAD (по двум сторонам и углу между ними)
Объяснение:
Два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями."
частные случаи:
1)Все квадраты подобны.
2)Если угол одного ромба равен углу другого ромба, то такие ромбы подобны.
3)Если две соседние стороны одного прямоугольника пропорциональны двум сторонам другого прямоугольника, то такие прямоугольники подобны.
4)Если две соседние стороны одного параллелограмма пропорциональны двум соседним сторонам другого параллелограмма, и углы, образованные этими сторонами, равны, то эти параллелограммы подобны.
5)Если соответственные стороны двух трапеций пропорциональны, то трапеции подобны.
6)Если угол одной трапеции равен углу другой трапеции, а стороны, образующие этот угол, и диагональ, выходящая из этого угла, соответственно пропорциональны двум сторонам другой трапеции, образующим угол, равный первому, и диагонали, выходящей из этого угла, то такие трапеции подобны.
Признак подобия произвольных выпуклых многоугольников
1)Если стороны и диагонали одного выпуклого n – угольника соответственно пропорциональны сторонам и диагоналям другого выпуклого n – угольника, то такие n – угольники подобны.
Признак подобия любых фигур:
1)Понятие подобия можно ввести не только для треугольников, но и для произвольных фигур. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых двух точек М и N фигуры F и сопоставленных им точек М1 и N1 фигуры F1 выполняется условие М1N1/MN = k, где k — одно и то же положительное число для всех точек. При этом предполагается, что каждая точка фигуры F1 оказывается сопоставленной какой-то точке фигуры F. Число k называется коэффициентом подобия фигур F и F1.