ОСТАЛОСЬ МАЛО ВРЕМЕНИ 1) Наресуйте довільний чотирикутник NPKS.
а) Побудуйте чотирикутник, симетричний даному відносно діагоналі NK.
б) Побудуйте чотирекутник, симетричний даному відносно виршині S.
2)При паралельному перенесині коло (x+1)^2 + (y-3)^2= 4 переходить у коло (x-5)^2 + (y-6)^2= 4, а точка N1(x1;y1) переходить у точку N(-4;8). Знайдіть координати N1.
1-й признак подобия треугольников (подобие треугольников по двум углам). Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Доказательство.
На сторонах AB и BC треугольника ABC отметим точки D и E, соответственно (см. рисунок). Так как ∠BED = ∠BCA, то треугольники ABC и DBE подобны по первому признаку по углам B и ∠BED = ∠BCA.
У подобных треугольников все углы равны, то есть если для треугольников ABC и DBE имеет место ∠B = ∠B и ∠BED = ∠BCA, то ∠BDE = ∠BAC, что требовалось доказать.
Большее основание равно 32 см.
Объяснение:
Рассматриваем трапецию ABCD - прямоугольная (чтобы было понятней: AB - меньшее основание, DC - большее основание, угол С=45°). Проведём высоту BK к большему основанию из вершины угла B. Получили прямоугольник ADBK. По свойству противоположных сторон BK=AD=16см, AB=DK=16см. Теперь рас-м треугольник BCK - прямоугольный. Т. к. угол C=45°, то найдём угол КВС: (сумма углов Δ - 180°) 180°-(90°+45°)= 45°. Следовательно, Δ BCK -равнобедренный, ВК=СК=16см. DC = DK+KC=16+16=32СМ.