∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
<BCK =<MCK =α -?
Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC).
Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Из ΔABL: BL =AB*tq<LAB =AB*tq20° ;
ML =BM - BL = BC/2 - <BL = (AB*tq40°)/2 - AB*tq20°= (AB/2)*tq40°-AB*tq20° =
=(AB/2)*2tq20°/(1-tq²20°) - AB*tq20° =
=(AB/2)*tq20°(2/(1-tq²20°) -2) =(AB/2)*2tq³20°/(1 -tq²20°)=(AB/2)*tq²20°*tq40°.
MK | | BA ; <LKM = <LAB =20° ;
Из ΔKML: MK =ML*ctq<LKM⇔MK=AB/2)*tq²20°*tq40°*ctq20° =(AB/2)*tq20*tq40°;
окончательноьно :
tqα = 2MK/AB = 2*(AB/2)*tq20*tq40°/ AB =tq20°*tq40°.
ответ : α = arctq (tq20°*tq40°) .
(пример некрасивого решения)
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°