Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1].
ТреугольникРёбра3Символ Шлефли{3} Медиафайлы на Викискладе
Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2]. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}-мерной геометрии аналогом треугольника является {\displaystyle n}-й мерный симплекс.
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1].
ТреугольникРёбра3Символ Шлефли{3} Медиафайлы на Викискладе
Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2]. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}-мерной геометрии аналогом треугольника является {\displaystyle n}-й мерный симплекс.
полупериметр
p(ACS) = 1/2(6+6+4) = 8
площадь по формуле Герона
S(ACS) = √(8*2*2*4) = 8√2
высота через площадь
1/2*6*AW = 8√2
AW = 8/3√2
SW = √(6² - (8/3√2)²) = √(36 - 64/9*2) = √(196/9) = 14/3
--
полупериметр
p(BCS) = 1/2(6+6+3) = 7,5
площадь по формуле Герона
S(ACS) = √(7,5*1,5*1,5*4,5) = √(15*3*3*9/2⁴)= 9/4√15
высота через площадь
1/2*6*BR = 9/4√15
BR = 3/4√15
SR = √(6² - (3/4√15)²) = √(36 - 9/16*15) = √(441/16) = 21/4
подобие
QW/BR = SW/SR
QW/(3/4√15) = (14/3)/(21/4)
QW = 2√(5/3)
---
полупериметр
p(ABS) = 1/2(6+6+2) = 7
площадь по формуле Герона
S(ACS) = √(7*1*1*5) = √35
высота через площадь
1/2*6*AQ = √35
AQ = 1/3√35
---------------------------
Все стороны треугольника AQW у нас есть, можно вычислить плоский угол двугранного угла ребра SC
По теореме косинусов
AQ² = AW² + QW² - 2*AQ*QW*cos(QWA)
35/9 = (8/3√2)² + (2√(5/3))² - 2*8/3√2*2√(5/3)*cos(QWA)
35/9 = 64/9*2 + 4*5/3 - 32/3√(10/3)*cos(QWA)
35/9 = 128/9 + 60/9 - 32/3√(10/3)*cos(QWA)
153/9 = 32/3√(10/3)*cos(QWA)
153/√3 = 32√10*cos(QWA)
153/(32√30) = cos(QWA)
cos(QWA) = 51/32*√(3/10)
∠QWA = arccos(51/32*√(3/10)) ≈ 29,2°