Дано: ABCD — паралаллелограмм; P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°. Найти: AB, BC, CD, AD. Решение. ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°) BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. AB = 2BH = 2 * 7,5 см = 15см AB = CD, BC = AD (по определению параллелограмма) CD = AB = 15 см P = 2AB + 2BC 2BC = 80 см - 2 * 15см = 50 см AD = BC = 50 см : 2 = 25 см ответ: AB = CD = 15 см, BC = AD = 25 см.
Если плоскость проходит через данную прямую , параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость α проходит через прямую С, параллельную плоскости γ, и пересекает эту плоскость, => линия пересечения а плоскостей α и γ параллельна прямой С. => а||С
Из теоремы о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Прямая а не лежит в плоскости β и параллельна прямой С, лежащей в плоскости β, значит, прямая а параллельна плоскости β.
Аналогично плоскость β проходит через прямую С, параллельную плоскости γ, пересекает плоскость γ, => линия пересечения b плоскостей β и γ параллельна прямой С. => b || С, значит, b || α.
P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°.
Найти: AB, BC, CD, AD.
Решение.
ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°)
BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы.
AB = 2BH = 2 * 7,5 см = 15см
AB = CD, BC = AD (по определению параллелограмма)
CD = AB = 15 см
P = 2AB + 2BC
2BC = 80 см - 2 * 15см = 50 см
AD = BC = 50 см : 2 = 25 см
ответ: AB = CD = 15 см, BC = AD = 25 см.
Если плоскость проходит через данную прямую , параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость α проходит через прямую С, параллельную плоскости γ, и пересекает эту плоскость, => линия пересечения а плоскостей α и γ параллельна прямой С. => а||С
Из теоремы о параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Прямая а не лежит в плоскости β и параллельна прямой С, лежащей в плоскости β, значит, прямая а параллельна плоскости β.
Аналогично плоскость β проходит через прямую С, параллельную плоскости γ, пересекает плоскость γ, => линия пересечения b плоскостей β и γ параллельна прямой С. => b || С, значит, b || α.
Доказано.