От точки O пересечения диагоналей ромба ABCD к его плоскости проведён перпендикуляр ОМ = 8 см. Прямые МС и MD формируют с плоскостью ромба соответствующие углы 30° и 45°. Найти сторону ромба. (перевод для русских) Чертёж ромба прилагается.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
треугольники АОВ , ДОС - РАВНЫ
тоже самое с треугольниками АОД и ВОС - тоже равны - по тому же признаку
р=0,5(9+10+17)=0,5·36=18.
S=√18·9·8·1=36 см².
R=(9·10·17)/4·36=1530/144=10,625 см
2)Проти найменьшої сторони трикутника лежить найменший кут. Застосуємо теорему косинусів
а=8 см, b=18 см, с=24 см, α- найменший кут.
а²=b²+с² - 2b·с·cosα$
64=324+576-2·18·24·cosα.
64=900-864·cosα,
896cosα=836,
cosα=836/896=0,9330; α≈21°.
3) см фото. ВК =h.АВ=8, ВС=26, АС=30.
Пусть АК=х; СК-60-х.
ΔАВК. ВК²=АВ²-АК²=64-х².
ΔВСК. ВК²=ВС²-СК²,
ВК²=676-900+60х-х².
64-х²=676-900+60х-х²,
60х=288,
х=4,8. АК=4,8.
ΔАВК. ВК²=64-4,8²=64-23,04=40,96.
ВК=√40,96=6,4 см.
обозначим точку пересечения отрезков О
углы АОВ , ДОС - вертикальные - равны
стороны АО, ОС равны -половины отрезка АС
стороны ВО, ОД равны -половины отрезка ВД
ПЕРВЫЙ признак равенства :
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
треугольники АОВ , ДОС - РАВНЫ
тоже самое с треугольниками АОД и ВОС - тоже равны - по тому же признаку
теперь
треугольник АВС = треугольник АОВ +треугольник ВОС
треугольник СДА = треугольник АОД +треугольник ДОС
треугольники АВС и СДА равны, потому что состоят из двух равных треугольников
Ч.Т.Д