Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Даны координаты точек: М(7;2;0), N(7;0;2), K(0;7;2).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - 7 y - 2 z - 0
7 - 7 0 - 2 2 - 0
0 - 7 7 - 2 2 - 0 = 0
x - 7 y - 2 z - 0
0 -2 2
-7 5 2 = 0
(x - 7) (-2·2-2·5) - (y - 2) (0·2-2·(-7)) + (z - 0) (0·5-(-2)·(-7)) = 0,
(-14) (x - 7) + (-14) (y - 2) + (-14) (z - 0) = 0,
- 14x - 14y - 14z + 126 = 0 или, сократив на -14 получаем:
x + y + z - 9 = 0.
Подставив координаты точки L в уравнение, определяем:
(27/3) - 9 = 0,
0 = 0.
ответ: да ,точка L лежит на плоскости MNK.