Отношение соответствующих сторон двух подобных треугольников равно 35, сумма площадей этих треугольников равна 204 см2. Вычисли площадь каждого треугольника.
ответ: площадь первого треугольника равна см2, а площадь второго треугольника равна см2.
S = ½d1d2 Имеем ромб ABCD, точка пересечения диагоналей - О. У ромба все стороны равны между собой => 52/4=13 Половина диагонали и сторона (любая на выбор, я взял АВ) образуют прямоугольный треугольник. За теоремой Пифагора АО² + ОВ² = АВ² Подставляем имеющиеся значения: 5² + ОВ² = 13² 25 + ОВ² = 169 ОВ² = 169 - 25 ОВ² = 144 ОВ = √144 ОВ = 12 Отлично. Найденный нами катет является еще и половиной второй диагонали, которую мы искали. То есть, целая диагональ равна DB= 12•2=24 А теперь... S = ½d1d2 = ½AC•DB = ½ • 10 • 24 = 120 см.
Нужно найти углы ВОА и ВОС. Находим внутренний угол В треугольника АВС: <B=180-78=102° Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС. Поскольку ВО - биссектриса, то угол ОВA равен: <OBA= 102:2=51° Зная внешний угол при вершине А, находим внутренний угол треугольника: <A=180-150=30° Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО: <BOA=180-<OBA-<A=180-51-30=99° <BOC=<AOC-<BOA=180-99=81°
Имеем ромб ABCD, точка пересечения диагоналей - О.
У ромба все стороны равны между собой => 52/4=13
Половина диагонали и сторона (любая на выбор, я взял АВ) образуют прямоугольный треугольник.
За теоремой Пифагора АО² + ОВ² = АВ²
Подставляем имеющиеся значения:
5² + ОВ² = 13²
25 + ОВ² = 169
ОВ² = 169 - 25
ОВ² = 144
ОВ = √144
ОВ = 12
Отлично. Найденный нами катет является еще и половиной второй диагонали, которую мы искали. То есть, целая диагональ равна DB= 12•2=24
А теперь...
S = ½d1d2 = ½AC•DB = ½ • 10 • 24 = 120 см.
Находим внутренний угол В треугольника АВС:
<B=180-78=102°
Это наибольший угол треугольника (на углы А и С приходится всего 180-102=78°). Против большего угла лежит большая сторона треугольника. Значит, искомые углы ВОА и ВОС.
Поскольку ВО - биссектриса, то угол ОВA равен:
<OBA= 102:2=51°
Зная внешний угол при вершине А, находим внутренний угол треугольника:
<A=180-150=30°
Зная, что сумма углов треугольника равна 180°, находим угол ВОА в треугольнике АВО:
<BOA=180-<OBA-<A=180-51-30=99°
<BOC=<AOC-<BOA=180-99=81°