АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Прямые CD и C1D1 лежат в параллельных плоскостях. Значит они либо скрещиваются либо параллельны. Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1. Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x CK/(CC1-CK)=5/x (CK:CC1)/(1-CK:CC1)=5/x (2/7)/(1-2/7)=5/x 2/5=5/x x=25/2=12,5 ответ:12,5
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Значит они либо скрещиваются либо параллельны.
Поскольку плоскость задается двумя пересекающимися прямыми,то точки C,D ,C1,D1 лежат в одной плоскости. То прямые СD и C1D1 тоже лежат в одной плоскости назовем ее b. Но скрещивающиеся прямые не лежат в одной плоскости. Тогда СD ||C1D1.
Откуда из подобия треугольников по накрест лежащим углам верно что: CK/KC1=CD/C1D1 С1D1=x
CK/(CC1-CK)=5/x
(CK:CC1)/(1-CK:CC1)=5/x
(2/7)/(1-2/7)=5/x
2/5=5/x
x=25/2=12,5
ответ:12,5