9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см
1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см
1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение: