Т.к. все боковые грани наклонены род одним углом, то основанием высоты пирамиды служит центр вписанной в основание пирамиды окружности. Площадь тр-ка: S=pr ⇒ r=S/p p=(a+b+c)/2 c=√(a²+b²)=√(5²+12²)=13. p=(5+12+13)/2=15. S=ab/2=30 r=30/15=2. Рассмотрим треугольник, образованный радиусом вписанной окружности, высотой пирамиды и апофемой.В нём угол между апофемой и радиусом равен 45°, а другой 90°, значит тр-ник равнобедренный, значит высота равна радиусу: h=r=2. Объём пирамиды: V=Sh/3=30·2/3=20 (ед³). - это ответ.
Отрезки касательных, проведенных к окружности равны. Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д; стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см; ДС=24 см; рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см; рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см; рассм. касательные, проведенные из т.В - ВК=ВД=1см; отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит Р=6+25+29=60см - это ответ.
Площадь тр-ка: S=pr ⇒ r=S/p
p=(a+b+c)/2
c=√(a²+b²)=√(5²+12²)=13.
p=(5+12+13)/2=15.
S=ab/2=30
r=30/15=2.
Рассмотрим треугольник, образованный радиусом вписанной окружности, высотой пирамиды и апофемой.В нём угол между апофемой и радиусом равен 45°, а другой 90°, значит тр-ник равнобедренный, значит высота равна радиусу: h=r=2.
Объём пирамиды: V=Sh/3=30·2/3=20 (ед³). - это ответ.
Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д;
стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см;
ДС=24 см;
рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см;
рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см;
рассм. касательные, проведенные из т.В - ВК=ВД=1см;
отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит
Р=6+25+29=60см - это ответ.