Дано: треугольник DEK- равнобедренный. DK=16см EK=ED, как стороны равнобедренного треугольника. угол DEF=43, Найти KF, углы DEK, EFD. Решение. 1)Угол DEF=FEK=43, потому что EF -биссектриса. Отсюда следует, что угол dek= 43+43=96. 2) так как треугольник равнобедренный, углы при основании равны. Значит (180-96)/2=42 градуса - угол DEK. 3) EFD= 90 градусов, потому что в равнобедренном треугольнике биссектриса, проведенная из вершины к основанию, = высоте = медиане. 4) По свойству выше мы находим FK, как половину DK, то есть 16/2=8 ответ: KF=16, DEK=42, EFD=90.
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3
DK=16см EK=ED, как стороны равнобедренного треугольника.
угол DEF=43,
Найти KF, углы DEK, EFD.
Решение.
1)Угол DEF=FEK=43, потому что EF -биссектриса. Отсюда следует, что угол dek= 43+43=96.
2) так как треугольник равнобедренный, углы при основании равны. Значит (180-96)/2=42 градуса - угол DEK.
3) EFD= 90 градусов, потому что в равнобедренном треугольнике биссектриса, проведенная из вершины к основанию, = высоте = медиане.
4) По свойству выше мы находим FK, как половину DK, то есть 16/2=8
ответ: KF=16, DEK=42, EFD=90.
Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам.
Но NC=3, значит, NP=1,5.
Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ.
ответ: 2:3