Отрезки AD И BC пересекаются в точке O,BO=OD,угол ABC=65 градусам,угол ADC=45 градусам,угол AOC=110 градусам Найти:угол С доказать что треугольники ABO и CDO равны
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
ДАНЫ ТОЧКИ А(9;-5;8), B(3;-6;4), C(-6;0;8).
1) Координаты вектора BC: (-6-3=-9; 0-(-6)=6; 8-4=4) = (-9; 6; 4).
2) Разложение вектора BC как суммы двух векторов.
ВС = ВА + АС.
Вектор ВА =(9-3=6; -5+6=1; 8-4=4) = (6; 1; 4),
Вектор АС = (-6-9=-15; 0+5=5; 8-8=0) = (-15; 5; 0).
ВС = (6-15 = -9; 1+5=6; 4+0=4) = (-9; 6; 4).
3) Координаты середины отрезка AB.
М = ((9+3)/2=6; (-5-6)/2=-5,5; (8+4)/2=6) = (6; -5,5; 6).
4) Длина отрезка AC.
|AC| = √((-15)² + 5² + 0²) = √(225 + 25 + 0) =√250 = 5√10.
5) Определите вид треугольника ABC.
Для этого надо определить или стороны, или углы треугольника.
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
11,53256 15,81139 7,28011 17,31203 34,62406 38,81043
133 250 53 (это квадраты сторон).
cos A = 0,73843 cos B = -0,381141 cos С = 0,90487
Аrad = 0,74005 Brad = 1,961827 Сrad = 0,439712
Аgr = 42,401914 Bgr = 112,404407 Сgr = 25,193679
Треугольник АВС тупоугольный.
6) Длина медианы из вершины А:
Точка М как середина стороны BC
х у z
-1,5 -3 6
А(9;-5;8)
Тогда АМ = √((9+1,5)² + (-5+3)² + (8-6)²) = √118,25 ≈ 10,87428.