Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
обозначим < ABD через α
тогда <BAD = 180 -2α
<BAD = DAC = 180 - 2α(AD -биссектриса)
<BAC = 2*<BAD = 360 - 4α (AD - биссектриса)
<DAC = <DCA = 180 - 2α (углы при основе равнобедреного ∆ADC (AD = DC по условию)
<ABC + <BAC + <DCA = 180 (сумма углов треугольника ровна 180 градусов)
α + 360 - 4α + 180 - 2α = 180
540 - 5α = 180
5α = 540 - 180
5α = 360
α = 72 °
<ABC = α = 72 °
<BAC = 360 - 4α = 360 -288 = 72°
<BCA = 180 - 2α =180 - 144 = 36° - это и есть меньший угол треугольника
ответ: <BCA = 36°
Отметь лучший ответ!
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°