В основании призмы лежит ромб АВСД, ∠А=α, АС=d, ∠Д1ВД=γ. В тр-ке АОВ ∠ВАО=α/2, AO=d/2. ВО=AO·tgα/2=d·tg(α/2)/2. ВД=2ВО. AB=BO/sin(α/2)=d·tg(α/2)/2sin(α/2). Площадь ромба: S=АС·ВД/2=АС·ВО=d²·tg(α/2)/2. Площадь ромба: S=АВ·h, где h - высота ромба. h=S/AB=(d²·tg(α/2)/2):(d·tg(α/2)/2sin(α/2))=d·sin(α/2). Высота ромба, проведённая через его центр, является диаметром основания вписанного цилиндра, а высота цилиндра равна высоте призмы. В тр-ке BДД1 ДД1=ВД·tgγ=d·tg(α/2)·tgγ. Осевое сечение цилиндра - прямоугольник со сторонами, равными высоте и диаметру цилиндра. Площадь сечения: Sсеч=D·H=h·ДД1=d²·sinα·tg(α/2)·tgγ - это ответ.
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
В тр-ке АОВ ∠ВАО=α/2, AO=d/2.
ВО=AO·tgα/2=d·tg(α/2)/2.
ВД=2ВО.
AB=BO/sin(α/2)=d·tg(α/2)/2sin(α/2).
Площадь ромба: S=АС·ВД/2=АС·ВО=d²·tg(α/2)/2.
Площадь ромба: S=АВ·h, где h - высота ромба.
h=S/AB=(d²·tg(α/2)/2):(d·tg(α/2)/2sin(α/2))=d·sin(α/2).
Высота ромба, проведённая через его центр, является диаметром основания вписанного цилиндра, а высота цилиндра равна высоте призмы.
В тр-ке BДД1 ДД1=ВД·tgγ=d·tg(α/2)·tgγ.
Осевое сечение цилиндра - прямоугольник со сторонами, равными высоте и диаметру цилиндра.
Площадь сечения: Sсеч=D·H=h·ДД1=d²·sinα·tg(α/2)·tgγ - это ответ.
4 см
Объяснение:
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Если остались вопросы - спрашивайте!