Используем свойство подобия nn1/mm1 = nn2/mm2; 9/3 = nn2/5; nn2 = 9*5/3; nn2 = 15тоестьСоединим М1 и М2, N1 и N2. Получим прямоугольные треугольники ММ1М2 и NN1N2. Углы М1 и N1 у них прямые поскольку ММ1 и NN1 перпендикуляры к плоскости. Эти треугольники лежат в параллельных плоскостях поскольку пересекающиеся прямые их сторон перпендикулярны ребру двугранного угла. Следовательно угол ММ2М1= углу NN2N1. Значит эти треугольники подобны как прямоугольные с равным острым углом. Отсюда ММ2/ММ1=NN2/NN1. 5/3=NN2/9. Отсюда NN2=15
построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!