1).Определим величину угла СВА.
Угол СВА = 180 – АСВ – ВАС = 180 – 35 – 75 = 700.
Так как ВД, по условию, биссектриса угла АВС, то угол СВД = АВД = АВС / 2 = 70 / 2 = 350.
В треугольнике ВСД, угла при основании ВС равны 350, следовательно треугольник ВДС равнобедренный, а ДВ = ДС, что и требовалось доказать.
2).Рассмотрим треугольники ВСД и АВД. В треугольнике АВД угол АДВ = 180 – 30 – 75 = 750.
Треугольники ВСД и АВД равнобедренные с одинаковыми сторонами. ВД = СД = ВД = ВА.
Сравним основания ВС и АД. Основание СД лежит против угла 750, а основание АД против угла 300, следовательно ВС > АД.
ответ: ВС > АД.
Заданное уравнение x^2+3x+y=0 определяет параболу (λ2 = 0)
Выделяем полные квадраты:
(x^2+2·(3/2)x + (3/2)^2) -1·(3/2)^2 = (x+(3/2))^2-(9/4 ).
Преобразуем исходное уравнение:
(x+(3/2))^2 = -y + (9/4).
Получили уравнение параболы:
(x - x0)2 = 2p(y - y0) .
(x-(-3/2))^2 = 2·(-1/2)(y - (9/4) ).
Ветви параболы направлены вниз (p<0), вершина расположена в точке (x0, y0), т.е. в точке (-3/2; (9/4) ).
Параметр p = -1/2
Координаты фокуса: F((-3/2); 2).
Уравнение директрисы: y = y0 - (p/2 )
y = (9/4) - (-1/4) = 5/2
Детальнее параметры кривой даны во вложении.
1).Определим величину угла СВА.
Угол СВА = 180 – АСВ – ВАС = 180 – 35 – 75 = 700.
Так как ВД, по условию, биссектриса угла АВС, то угол СВД = АВД = АВС / 2 = 70 / 2 = 350.
В треугольнике ВСД, угла при основании ВС равны 350, следовательно треугольник ВДС равнобедренный, а ДВ = ДС, что и требовалось доказать.
2).Рассмотрим треугольники ВСД и АВД. В треугольнике АВД угол АДВ = 180 – 30 – 75 = 750.
Треугольники ВСД и АВД равнобедренные с одинаковыми сторонами. ВД = СД = ВД = ВА.
Сравним основания ВС и АД. Основание СД лежит против угла 750, а основание АД против угла 300, следовательно ВС > АД.
ответ: ВС > АД.
Заданное уравнение x^2+3x+y=0 определяет параболу (λ2 = 0)
Выделяем полные квадраты:
(x^2+2·(3/2)x + (3/2)^2) -1·(3/2)^2 = (x+(3/2))^2-(9/4 ).
Преобразуем исходное уравнение:
(x+(3/2))^2 = -y + (9/4).
Получили уравнение параболы:
(x - x0)2 = 2p(y - y0) .
(x-(-3/2))^2 = 2·(-1/2)(y - (9/4) ).
Ветви параболы направлены вниз (p<0), вершина расположена в точке (x0, y0), т.е. в точке (-3/2; (9/4) ).
Параметр p = -1/2
Координаты фокуса: F((-3/2); 2).
Уравнение директрисы: y = y0 - (p/2 )
y = (9/4) - (-1/4) = 5/2
Детальнее параметры кривой даны во вложении.