Отрезок AB является диаметром окружности. На окружности поставлена точка C так, что длина дуги AC равна 145 см, длина дуги AB равна 450 см. Найти модуль разности острых углов треугольника ABC.
поскольку угол BDC образован основанием равнобедренного треугольника и медианой, проведенной к ней, то, следуя из этого мы можем сделать вывод, что угол BDC = 90 градусов (по свойствам равнобедренного треугольника)
угол BAD = 180 - уг1 = 180 - 115 = 65
угол BCA = угBAD = 65 градусов (как углы, прилежащие к основанию равнобедренного треугольника)
4.
рассмотрим треугольники DEK и FEK. в них DE = EF как стороны равнобедренного треугольника, прилежащие к основанию, угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла), а угEDK = угEFK как углы при основании равнобедренного треугольника, следовательно, треугольники DEK и FEK равны по двум углам и стороне между ними, что и требовалось доказать.
(не очень понял формулировку данной задачи, но если имелось ввиду доказать равность углов а не треугольников, то можете просто сказать что угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла))
3.
BAD = 65
BDC = 90
BCA =65
Объяснение:
3.
поскольку угол BDC образован основанием равнобедренного треугольника и медианой, проведенной к ней, то, следуя из этого мы можем сделать вывод, что угол BDC = 90 градусов (по свойствам равнобедренного треугольника)
угол BAD = 180 - уг1 = 180 - 115 = 65
угол BCA = угBAD = 65 градусов (как углы, прилежащие к основанию равнобедренного треугольника)
4.
рассмотрим треугольники DEK и FEK. в них DE = EF как стороны равнобедренного треугольника, прилежащие к основанию, угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла), а угEDK = угEFK как углы при основании равнобедренного треугольника, следовательно, треугольники DEK и FEK равны по двум углам и стороне между ними, что и требовалось доказать.
(не очень понял формулировку данной задачи, но если имелось ввиду доказать равность углов а не треугольников, то можете просто сказать что угDEK = угFEK (т.к. биссектриса делит угDEF на два равных угла))
НЮХАЙ БЕБРУ м1.Відомо, що ∆АВС = ∆PQR. Виберіть правильне твердження.
А) ∠C=∠P, Б) ∠В=∠R, В) AC=QR, Г) BC=QR
2. У трикутнику АВС відрізок ВД є медіаною. Яка з наведених рівностей випливає з цієї умови?
А) АВ=ВС Б) ∠ВАД = 900 В) АД=ДС Г) ∠АДВ = 900.
3. Знайдіть периметр рівнобедреного трикутника, якщо його бічна сторона дорівнює 10см, а основа – 5 см.
4. АД – медіана рівнобедреного трикутника АВС з основою ВС. Чому дорівнює кут ВАС, якщо ∠САД = 400?
5. Знайдіть сторони рівнобедреного трикутника, якщо його периметр дорівнює 84см, а бічна сторона на 18см більша за його основу.
6. Відрізки АВ і СД перетинаються у точці О, яка є серединою кожного з них. ∠АВС = 600, ∠СДА = 300. Знайдіть градусну міру кута ВСД.
7. Доведіть рівність трикутників АВД і СВД, якщо ∠АВД=∠СВД і АВ=ВС.
1.Відомо, що ∆АВС = ∆PQR. Виберіть правильне твердження.
А) ∠C=∠P, Б) ∠В=∠R, В) AC=QR, Г) BC=QR
2. У трикутнику АВС відрізок ВД є медіаною. Яка з наведених рівностей випливає з цієї умови?
А) АВ=ВС Б) ∠ВАД = 900 В) АД=ДС Г) ∠АДВ = 900.
3. Знайдіть периметр рівнобедреного трикутника, якщо його бічна сторона дорівнює 10см, а основа – 5 см.
4. АД – медіана рівнобедреного трикутника АВС з основою ВС. Чому дорівнює кут ВАС, якщо ∠САД = 400?
5. Знайдіть сторони рівнобедреного трикутника, якщо його периметр дорівнює 84см, а бічна сторона на 18см більша за його основу.
6. Відрізки АВ і СД перетинаються у точці О, яка є серединою кожного