В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.
В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания 4,5. Найдите высоту. Сделаем рисунок. Пусть это будет пирамида МАВС. Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника). Радиус описанной окружности можно выразить через сторону треугольника R=a/√3 Тогда высоту пирамиды МО найдем по т. Пифагора: МО²=МС²-ОС² МО²=49- а²/3 МО²=(147-20,25):3=126,75:3=42,25 МО=√42,25=6,5
В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.
Сделаем рисунок.
Пусть это будет пирамида МАВС.
Основание высоты правильной треугольной пирамиды совпадает с центром описанной ( как, впрочем, и вписанной) окружности вокруг основания ( правильного треугольника).
Радиус описанной окружности можно выразить через сторону треугольника R=a/√3
Тогда высоту пирамиды МО найдем по т. Пифагора:
МО²=МС²-ОС²
МО²=49- а²/3
МО²=(147-20,25):3=126,75:3=42,25
МО=√42,25=6,5