Дано:
ABCDA₁B₁C₁D₁ - прямая призма
ABCD - трапеция
CD = KM = 6 см AB = 20 см
AD = 13 см BC = 15 см
AA₁ = 17 см
-------------------------------------------------
Найти:
V - ?
Рассмотрим основание призмы.
Проведем высоты: DK⊥AB, MC⊥AB
Пусть AK = x см, тогда MB = AB - AK - KM = 20 см - x см - 6 см = 14-x см.
Из ΔAKD: KD² = AD² - AK² = (13 см)² - (x см)²
Из ΔMBC: MC² = BC² - MB² = (15 см)² - (14-x см)²
Теперь решим систему уравнений с двумя неизвестными:
Где KD = MC = h, следовательно:
Теперь приравняем их:
169 см² - x² см² = 225 см² - (196 - 28x + x²) см²
169 см² - x² см² = 225 см² - 196 + 28x - x² см²
-x²+x²-28x = 225-196-169
-28x = -140 | : (-28)
x = 5 ⇒ AK = 5 см
Вычислим высоту основания из ΔAKD, и ΔMBC:
KD = √AD² - AK² = √(13 см)² - (5 см)² = √169 см² - 25 см² = √144 см² = 12 см
MC = √BC² - MB² = √(15 см)² - (14-5 см)² = √225 см² - (9 см)² = √225 см² - 81 см² = √144 см² = 12 см
KD = MC = 12 см
Теперь вычислим площадь основания призмы при площади трапеций:
(Sосн. = S(ABCD)) = (CD+AB)/2 × DK = (6 см + 20 см)/2 × 17 см = 26 см/2 × 17 см = 13 см × 17 см = 221 см²
И теперь мы находим объём призмы по такой формуле:
V = Sосн. × h = Sосн. × AA₁ = 221 см² × 17 см = 3757 см³
ответ: V = 3757 см³
P.S. Рисунок показан внизу↓
Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.
Дано:
ABCDA₁B₁C₁D₁ - прямая призма
ABCD - трапеция
CD = KM = 6 см AB = 20 см
AD = 13 см BC = 15 см
AA₁ = 17 см
-------------------------------------------------
Найти:
V - ?
Рассмотрим основание призмы.
Проведем высоты: DK⊥AB, MC⊥AB
Пусть AK = x см, тогда MB = AB - AK - KM = 20 см - x см - 6 см = 14-x см.
Из ΔAKD: KD² = AD² - AK² = (13 см)² - (x см)²
Из ΔMBC: MC² = BC² - MB² = (15 см)² - (14-x см)²
Теперь решим систему уравнений с двумя неизвестными:
Где KD = MC = h, следовательно:
Теперь приравняем их:
169 см² - x² см² = 225 см² - (196 - 28x + x²) см²
169 см² - x² см² = 225 см² - 196 + 28x - x² см²
-x²+x²-28x = 225-196-169
-28x = -140 | : (-28)
x = 5 ⇒ AK = 5 см
Вычислим высоту основания из ΔAKD, и ΔMBC:
KD = √AD² - AK² = √(13 см)² - (5 см)² = √169 см² - 25 см² = √144 см² = 12 см
MC = √BC² - MB² = √(15 см)² - (14-5 см)² = √225 см² - (9 см)² = √225 см² - 81 см² = √144 см² = 12 см
KD = MC = 12 см
Теперь вычислим площадь основания призмы при площади трапеций:
(Sосн. = S(ABCD)) = (CD+AB)/2 × DK = (6 см + 20 см)/2 × 17 см = 26 см/2 × 17 см = 13 см × 17 см = 221 см²
И теперь мы находим объём призмы по такой формуле:
V = Sосн. × h = Sосн. × AA₁ = 221 см² × 17 см = 3757 см³
ответ: V = 3757 см³
P.S. Рисунок показан внизу↓
Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
При пересечении двух параллельных прямых секущей сумма внутренних односторонних углов равна 180°.Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.