Отрезок АВ не пересекает плоскость а Через концы отрезка и его середину проведены параллельные пря- ми, которые пересекают плоскость а соответственно в точках А1, В, С Найдите длину отрезка АА1, если ВВ1, = 10 см, а СС1, на 4 см длиннее, чем АА,.
Площадь полной поверхности правильно треугольной пирамиды найдем по формуле : S= 1/2*Р*L +Sосн , где Р -периметр , L - апофема пирамиды , Sосн - площадь основания . Площадь основания найдем по формуле : S осн = sqrt (p*(p-a)*(p-b)*(p-c)) , где р - полупериметр треугольника = 8*3/2= 12см ,a , b и c - стороны треугольника . А так как все стороны треугольника равны , то S осн = sqrt (p*(p-a)^3) = sqrt (12 * (12 - 8)^3) = sqrt (12 * 4^3) =sqrt(12*64) = sqrt (768) =sqrt (3*4^4) =16*sqrt(3) см^2 /
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Площадь полной поверхности правильно треугольной пирамиды найдем по формуле : S= 1/2*Р*L +Sосн , где Р -периметр , L - апофема пирамиды , Sосн - площадь основания . Площадь основания найдем по формуле : S осн = sqrt (p*(p-a)*(p-b)*(p-c)) , где р - полупериметр треугольника = 8*3/2= 12см ,a , b и c - стороны треугольника . А так как все стороны треугольника равны , то S осн = sqrt (p*(p-a)^3) = sqrt (12 * (12 - 8)^3) = sqrt (12 * 4^3) =sqrt(12*64) = sqrt (768) =sqrt (3*4^4) =16*sqrt(3) см^2 /
S =1/2*8*3*6 + 16sqrt (3) = 72 + 16*sqrt(3) = 72 +16*1.73 =72 +27.7 = 100 см^2