Отрезок ав пересекает некоторую плоскость в точке м. через точки а и в проведены параллельные прямые, которые пересекают плоскость в точках а1 и в1. докажите, что точки а1, в1, м лежат на одной прямой. найдите отрезок ав, если аа1=18 см, вв1= 6 см, ам = 12 см.
Задание 1
Угол 1 = 125 градусов, угол 2 = 55 градусов, угол 3 = 125 градусов
Задание 2
Угол 1 = 75 градусов, угол 2 = 75 градусов, угол 3 = 30 градусов
Объяснение:
Задание 1
На 1 рисунке представлены параллельные прямые
Угол 1 и угол 3 равны как накрест лежащие углы при параллельных прямых
Угол 1 и угол в 125 градусов являются соответственными
Соответственные углы равны, значит угол 1 = 125 градусов и угол 3 = 125 градусов
Угол 2 и угол 1 являются односторонними при параллельных прямых с и d с секущей а
Односторонние углы = 180 градусов
Угол 2 = 180 градусов - 125 градусов = 55 градусов
Задание 2
По рисунку видно, что образованный треугольник является равнобедренным
В равнобедренном треугольнике углы при основании равны
Значит угол 2 = углу 1
Угол 4 и угол 3 являются смежными и в сумме составляют 180 градусов
Следовательно угол 3 = 180 градусов - 150 градусов = 30 градусов
Сумма углов в треугольнике составляет 180 градусов
Угол 1 + угол 2 = 180 градусов - 30 градусов = 150 градусов
Угол 1 = 150 градусов / 2 = 75 градусов
Углы накрест лежащие и они равны.
Следовательно два остальных накрест лежащих угла (360-55*2)/2=125
Дано прямые АВ и СК
точка О точка пересечения прямых
угол АОК =180 (развернутый) АОК =АОС+АОК
угол СОК = 180 СОК =СОВ+ВОК
АОС+АОК+СОВ=305
ВОК=360-305=55 ВОК=АОС=55 (накрест лежащие)
АОК=СОВ=(360-55*2)/2=125 (накрест лежащие)