Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).
Окружность проходит через середины сторон треугольника.
Следовательно она является описаной окружностью для треугольника
составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника
Длины средних линий найти просто это половина сторон исходного треугольника
. Исходный треугольник 6, 25, 29
Треугольник из средних линий 3; 12,5; 14,5.
Радиус описанной окружности определяется по формуле
R =a*b*с/(4корень(p(p-a)(p-b)(p-c))).
где p=(a+b+с)/2
У нас а=3;b=12,5; c=14,5
p =(3+12,5+14,5)/2=30/2=15
Находим радиус
R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))=
= 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
6. а) 60°, б) 120°, в) 120° и г) 90°.
7. а) 1/2, б) -1/2, в) -1/2, г) 0.
Объяснение:
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).