r1= а *корень из 3/ 6( радиус вписанной окуржности для равностороннего треугольника)
r2 а* корень из 3/3 (радиус описанной окружности)
вместо радиусов подставляешь формулы. и получаешь отношение v1 к v2.
дельши первый объм на второй. пи сократится, oo1 тоже. и в итоге получится: : : a * корень из 3 делить на 6 умножить на 3 делить на а* корень из 3. равно 3\6 или 1\2. ответ объёмы относятся как 1 к 2
2. прямую можно обозначать одной маленькой латинской буквой (a,b,
или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)
3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие
4. прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.
6. утверждение, имеющее доказательство, т.е. его надо доказать.
9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.
10. длина отрезка.
11.это точка, которая делит данный отрезок на две равные части.
ответ:
объяснение:
v1=пr1 в квадрате*оо1
v2=пr2 в квадрате*оо1
r1= а *корень из 3/ 6( радиус вписанной окуржности для равностороннего треугольника)
r2 а* корень из 3/3 (радиус описанной окружности)
вместо радиусов подставляешь формулы. и получаешь отношение v1 к v2.
дельши первый объм на второй. пи сократится, oo1 тоже. и в итоге получится: : : a * корень из 3 делить на 6 умножить на 3 делить на а* корень из 3. равно 3\6 или 1\2. ответ объёмы относятся как 1 к 2
ответ:
объяснение:
2. прямую можно обозначать одной маленькой латинской буквой (a,b,
или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)
3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие
4. прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.
6. утверждение, имеющее доказательство, т.е. его надо доказать.
9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.
10. длина отрезка.
11.это точка, которая делит данный отрезок на две равные части.