Отрезок DC перпендикуляр к плоскости треугольника ABC угол с равен 90 градусов см-высота треугольника АВС Найди ДМ если ас равно 30 см AB равно 50 см ДС равно 7см
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Угол при вершине равен 40°. Сумма углов при основании равна 140°, так как две стороны равны, значит нам дан равнобедренный треугольник. Чтобы найти углы при основании отдельно, нам надо сумму углов при основании разделить на 2. Углы при основании равны по 70°.
Рассмотрим треугольник M1P1N1:
Нам дан равнобедренный треугольник по условию, так как по условию две стороны равны. Углы значит при основании будут равны. Один угол при основании равен 70°, значит и другой угол при основании равен 70°. Найдём угол при вершине. Угол при вершине будет равен 180°-(70°+70°)=40°
Теперь посмотрим на оба эти треугольника. Сразу мы можем увидеть, что у этих треугольников углы равны. Значит все стороны пропорциональны.
А мы знаем правило:
Если углы соответственно равны и стороны одного треугольника пропорциональны сходственными сторонами другого треугольника, то такие треугольники подобны.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
..
Объяснение:
Рассмотрим треугольник МРN:
Угол при вершине равен 40°. Сумма углов при основании равна 140°, так как две стороны равны, значит нам дан равнобедренный треугольник. Чтобы найти углы при основании отдельно, нам надо сумму углов при основании разделить на 2. Углы при основании равны по 70°.
Рассмотрим треугольник M1P1N1:
Нам дан равнобедренный треугольник по условию, так как по условию две стороны равны. Углы значит при основании будут равны. Один угол при основании равен 70°, значит и другой угол при основании равен 70°. Найдём угол при вершине. Угол при вершине будет равен 180°-(70°+70°)=40°
Теперь посмотрим на оба эти треугольника. Сразу мы можем увидеть, что у этих треугольников углы равны. Значит все стороны пропорциональны.
А мы знаем правило:
Если углы соответственно равны и стороны одного треугольника пропорциональны сходственными сторонами другого треугольника, то такие треугольники подобны.
ЧТД