Так рассуждаем логически если основание пирамиды - прямойг. треуг. АВС, угол В=90, АС=6см ВС=8см. По теореме Пифагора гипотенуза АС=10см. SH - высота пирамиды. Если около прямоуг. тр-ка описать окружность, то его гипотенуза является диаметром, а центр окружности лежит на середине гипотенузы, т.е. в точке Н. Следовательно, АН=ВН=СН как радиусы описанной окружности. Высота SH равна гипотенузе по условию, значит SH=10 см, АН=ВН=10/2=5см. Треуг-ки SHA=SHB=AHS по двум катетам, следовательно все боковые ребра пирамиды равны SA=SB=SC=√(100-25)=5√3cм
так рассуждаемЕсли в прямоуг. треуг-ке один острый угол 45, то и второй 45. Треуг. равнобедренный. S(основания)=6*6/2=18см^2. Высота Н=V/S=108/18=6см. Гипотенуза треуг-ка в основании равна √(36+36)=6√2см.
Точку пересечения высот треугольника KLM обозначим - D. Точку серединного перпендикуляра на сторону DM обозначим - E. Центр окружности вокруг Δ KLM- O.
Рассмотрим Δ KDM -равнобедренный, явно претендующий на равносторонний. Определяем центр окружности вокруг Δ KDM. Проводим средний перпендикуляр треугольника. DO - одновременно является -выстой , биссектрисой и медианой, по условию данного Δ KDM -равнобедренный. KE - средний перпендикуляр и пересекаются они в точке L-это и будет центр окружности Δ KDM.
Рассмотрим Δ KEM и Δ KED- равны по признаку (KE-общая, DE=EM, т.к. E-точка середины и Ŀ 90 гр между равными сторонами). Следовательно, KE=KM вывод Δ KDM -равносторонний. Высота Δ KDM H=√36-9= 5 см. Вспомним соотношени высот в равностороннем треугольнике 1/2 относительно точки их пересечения.Точка C переечение серединного перпендикуляра с стороной KM, и так LC=5/3, DL=2*5/3=10/3. R=10/3.
Рассмотрим углы образованный вокруг точки L их 6 и обазованные бисектрисами в равностореннем Δ KDM они равны между собой 360/6=60гр, следовательно каждый из них 60 гр. Рассмотрим Δ LOM он оказывается - тоже равносторонним. Вывод радиус окружности Δ KDM равен радиусу окружности Δ KLM и равен R=10/3. И ещё вывод что, "если известно, что на этой окружности лежит центр окружности" , то только тогда когда Δ KLM - равнобедренный.
Так рассуждаем логически если основание пирамиды - прямойг. треуг. АВС, угол В=90, АС=6см ВС=8см. По теореме Пифагора гипотенуза АС=10см. SH - высота пирамиды. Если около прямоуг. тр-ка описать окружность, то его гипотенуза является диаметром, а центр окружности лежит на середине гипотенузы, т.е. в точке Н. Следовательно, АН=ВН=СН как радиусы описанной окружности. Высота SH равна гипотенузе по условию, значит SH=10 см, АН=ВН=10/2=5см. Треуг-ки SHA=SHB=AHS по двум катетам, следовательно все боковые ребра пирамиды равны SA=SB=SC=√(100-25)=5√3cм
так рассуждаемЕсли в прямоуг. треуг-ке один острый угол 45, то и второй 45. Треуг. равнобедренный. S(основания)=6*6/2=18см^2. Высота Н=V/S=108/18=6см. Гипотенуза треуг-ка в основании равна √(36+36)=6√2см.
Площадь полной поверхности призмы:
S=18*2+36*2+36√2=108+36√2(см^2)
Точку пересечения высот треугольника KLM обозначим - D. Точку серединного перпендикуляра на сторону DM обозначим - E. Центр окружности вокруг Δ KLM- O.
Рассмотрим Δ KDM -равнобедренный, явно претендующий на равносторонний. Определяем центр окружности вокруг Δ KDM. Проводим средний перпендикуляр треугольника. DO - одновременно является -выстой , биссектрисой и медианой, по условию данного Δ KDM -равнобедренный. KE - средний перпендикуляр и пересекаются они в точке L-это и будет центр окружности Δ KDM.
Рассмотрим Δ KEM и Δ KED- равны по признаку (KE-общая, DE=EM, т.к. E-точка середины и Ŀ 90 гр между равными сторонами). Следовательно, KE=KM вывод Δ KDM -равносторонний. Высота Δ KDM H=√36-9= 5 см. Вспомним соотношени высот в равностороннем треугольнике 1/2 относительно точки их пересечения.Точка C переечение серединного перпендикуляра с стороной KM, и так LC=5/3, DL=2*5/3=10/3. R=10/3.
Рассмотрим углы образованный вокруг точки L их 6 и обазованные бисектрисами в равностореннем Δ KDM они равны между собой 360/6=60гр, следовательно каждый из них 60 гр. Рассмотрим Δ LOM он оказывается - тоже равносторонним. Вывод радиус окружности Δ KDM равен радиусу окружности Δ KLM и равен R=10/3. И ещё вывод что, "если известно, что на этой окружности лежит центр окружности" , то только тогда когда Δ KLM - равнобедренный.